Initial commit based of previous repositories contents

This commit is contained in:
2026-01-06 18:26:38 +01:00
commit 35ad81484c
9 changed files with 602 additions and 0 deletions

188
example.py Normal file
View File

@@ -0,0 +1,188 @@
import math
import matplotlib.pyplot as plt
import numpy as np
# import squidpy as sq
from graph_tool.all import *
from src import centrality
from src import plot
from src import fitting
def merfish():
"""
Merfish dataset from `squidpy`.
"""
adata = sq.datasets.merfish()
adata = adata[adata.obs.Bregma == -9].copy()
return adata
def mibitof():
"""
Mibitof dataset from `squidpy`.
"""
adata = sq.datasets.mibitof()
return adata
def random_graph(n=5000, seed=None):
"""
Uniformly random point cloud generation.
`n` [int] Number of points to generate. Default 5000 seems like a good starting point in point density and corresponding runtime for the subsequent calculations.
@return [numpy.ndarray] Array of shape(n, 2) containing the coordinates for each point of the generated point cloud.
"""
if seed is None:
import secrets
seed = secrets.randbits(128)
rng = np.random.default_rng(seed=seed)
return rng.random((n, 2)), seed
def spatial_graph(adata):
"""
Generate the spatial graph using delaunay for the given `adata`.
`adata` will contain the calculated spatial graph contents in the keys
`adata.obps['spatial_distances']` and `adata.obsm['spatial']` afterwards too.
@return [Graph] generated networkx graph from adata['spatial_distances']
"""
g, pos = graph_tool.generation.triangulation(adata, type="delaunay")
g.vp["pos"] = pos
weight = g.new_edge_property("double")
for e in g.edges():
weight[e] = math.sqrt(sum(map(abs, pos[e.source()].a - pos[e.target()].a)))**2
return g, weight
# generate spatial graph from a given dataset
# g, weight = spatial_graph(merfish().obsm['spatial'])
for i in range(1, 10):
points, seed = random_graph()
g, weight = spatial_graph(points)
g = GraphView(g)
# calculate centrality values
vp = closeness(g, weight=weight)
vp.a = np.nan_to_num(vp.a) # correct floating point values
# ep.a = np.nan_to_num(ep.a) # correct floating point values
# calculate convex hull
convex_hull = centrality.convex_hull(g)
# plot graph with convex_hull
fig = plt.figure(figsize=(15, 5))
ax0, ax1 = fig.subplots(1, 2)
plot.graph_plot(fig, ax0, g, vp, convex_hull, f"Random Graph (seed: {seed})\nCloseness")
# generate model based on convex hull and associated centrality values
quantification = plot.quantification_data(g, vp, convex_hull)
# optimize model's piece-wise linear function
d = quantification[:, 0]
C = quantification[:, 1]
m_opt, c0_opt, b_opt = fitting.fit_piece_wise_linear(d, C)
# TODO
# should this be part of the plotting function itself, it should not be necessary for me to do this
d_curve = np.linspace(min(d), max(d), 500)
C_curve = np.piecewise(
d_curve,
[d_curve <= b_opt, d_curve > b_opt],
[lambda x: m_opt * x + c0_opt, lambda x: m_opt * b_opt + c0_opt]
)
# plot model containing modeled piece-wise linear function
plot.quantification_plot(ax1, quantification, d_curve, C_curve, 'Models')
# linear regression model
m_reg, c_reg = fitting.fit_linear_regression(d, C)
x = np.linspace(min(d), max(d), 500)
y = m_reg * x + c_reg
ax1.plot(x, y, color='k', linewidth=1, label="Simple Linear Regression")
ax1.legend()
fig.savefig(f"random_point_clouds/{i}_closeness.svg", format='svg')
# ---------------------------------------------------------------------------------------------
# calculate centrality values
vp, ep = betweenness(g, weight=weight)
vp.a = np.nan_to_num(vp.a) # correct floating point values
# ep.a = np.nan_to_num(ep.a) # correct floating point values
# calculate convex hull
convex_hull = centrality.convex_hull(g)
# plot graph with convex_hull
fig = plt.figure(figsize=(15, 5))
ax0, ax1 = fig.subplots(1, 2)
plot.graph_plot(fig, ax0, g, vp, convex_hull, f"Random Graph (seed: {seed})\nBetweenness")
# generate model based on convex hull and associated centrality values
quantification = plot.quantification_data(g, vp, convex_hull)
# optimize model's piece-wise linear function
d = quantification[:, 0]
C = quantification[:, 1]
m_opt, c0_opt, b_opt = fitting.fit_piece_wise_linear(d, C)
# TODO
# should this be part of the plotting function itself, it should not be necessary for me to do this
d_curve = np.linspace(min(d), max(d), 500)
C_curve = np.piecewise(
d_curve,
[d_curve <= b_opt, d_curve > b_opt],
[lambda x: m_opt * x + c0_opt, lambda x: m_opt * b_opt + c0_opt]
)
# plot model containing modeled piece-wise linear function
plot.quantification_plot(ax1, quantification, d_curve, C_curve, 'Models')
# linear regression model
m_reg, c_reg = fitting.fit_linear_regression(d, C)
x = np.linspace(min(d), max(d), 500)
y = m_reg * x + c_reg
ax1.plot(x, y, color='k', linewidth=1, label="Simple Linear Regression")
ax1.legend()
fig.savefig(f"random_point_clouds/{i}_betweenness.svg", format='svg')
# ---------------------------------------------------------------------------------------------
# calculate centrality values
vp = pagerank(g, weight=weight)
vp.a = np.nan_to_num(vp.a) # correct floating point values
# ep.a = np.nan_to_num(ep.a) # correct floating point values
# calculate convex hull
convex_hull = centrality.convex_hull(g)
# plot graph with convex_hull
fig = plt.figure(figsize=(15, 5))
ax0, ax1 = fig.subplots(1, 2)
plot.graph_plot(fig, ax0, g, vp, convex_hull, f"Random Graph (seed: {seed})\nPageRank")
# generate model based on convex hull and associated centrality values
quantification = plot.quantification_data(g, vp, convex_hull)
# optimize model's piece-wise linear function
d = quantification[:, 0]
C = quantification[:, 1]
m_opt, c0_opt, b_opt = fitting.fit_piece_wise_linear(d, C)
# TODO
# should this be part of the plotting function itself, it should not be necessary for me to do this
d_curve = np.linspace(min(d), max(d), 500)
C_curve = np.piecewise(
d_curve,
[d_curve <= b_opt, d_curve > b_opt],
[lambda x: m_opt * x + c0_opt, lambda x: m_opt * b_opt + c0_opt]
)
# plot model containing modeled piece-wise linear function
plot.quantification_plot(ax1, quantification, d_curve, C_curve, 'Models')
# linear regression model
m_reg, c_reg = fitting.fit_linear_regression(d, C)
x = np.linspace(min(d), max(d), 500)
y = m_reg * x + c_reg
ax1.plot(x, y, color='k', linewidth=1, label="Simple Linear Regression")
ax1.legend()
fig.savefig(f"random_point_clouds/{i}_pagerank.svg", format='svg')