add: AIC score for each model; add score into lable of corresponding function in plots
This commit is contained in:
162
example.py
162
example.py
@@ -2,7 +2,7 @@ import math
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
# import squidpy as sq
|
||||
import squidpy as sq
|
||||
from graph_tool.all import *
|
||||
|
||||
from src import centrality
|
||||
@@ -43,8 +43,8 @@ def spatial_graph(adata):
|
||||
"""
|
||||
Generate the spatial graph using delaunay for the given `adata`.
|
||||
`adata` will contain the calculated spatial graph contents in the keys
|
||||
`adata.obps['spatial_distances']` and `adata.obsm['spatial']` afterwards too.
|
||||
@return [Graph] generated networkx graph from adata['spatial_distances']
|
||||
adata.obsm['spatial']` in case the `adata` is created from a dataset of *squidpy*.
|
||||
@return [Graph] generated networkx graph from adata.obsp['spatial_distances']
|
||||
"""
|
||||
g, pos = graph_tool.generation.triangulation(adata, type="delaunay")
|
||||
g.vp["pos"] = pos
|
||||
@@ -53,18 +53,94 @@ def spatial_graph(adata):
|
||||
weight[e] = math.sqrt(sum(map(abs, pos[e.source()].a - pos[e.target()].a)))**2
|
||||
return g, weight
|
||||
|
||||
# generate spatial graph from a given dataset
|
||||
# g, weight = spatial_graph(merfish().obsm['spatial'])
|
||||
for i in range(1, 10):
|
||||
def merfish_example():
|
||||
# generate spatial graph from a given dataset
|
||||
g, weight = spatial_graph(merfish().obsm['spatial'])
|
||||
g = GraphView(g)
|
||||
|
||||
x_spatial = []
|
||||
for v in g.vertices():
|
||||
x_spatial.append(g.vp["pos"][v][0])
|
||||
|
||||
# calculate centrality values
|
||||
vp = closeness(g, weight=weight)
|
||||
vp.a = np.nan_to_num(vp.a) # correct floating point values
|
||||
|
||||
# normalization
|
||||
min_val, max_val = vp.a.min(), vp.a.max()
|
||||
vp.a = (vp.a - min_val) / (max_val - min_val)
|
||||
|
||||
# calculate convex hull
|
||||
convex_hull = centrality.convex_hull(g)
|
||||
|
||||
# plot graph with convex_hull
|
||||
fig = plt.figure(figsize=(15, 5))
|
||||
ax0, ax1 = fig.subplots(1, 2)
|
||||
plot.graph_plot(fig, ax0, g, vp, convex_hull, f"Merfish\nCloseness")
|
||||
|
||||
# generate model based on convex hull and associated centrality values
|
||||
quantification = plot.quantification_data(g, vp, convex_hull)
|
||||
|
||||
# optimize model's piece-wise linear function
|
||||
d = quantification[:, 0]
|
||||
C = quantification[:, 1]
|
||||
m_opt, c0_opt, b_opt = fitting.fit_piece_wise_linear(d, C)
|
||||
|
||||
# AIC
|
||||
# AIC = 2 * k (= 2) - 2 * ln(L^~)
|
||||
# with L^~ = sum(f(x_i)) where x_i describes a data point
|
||||
# - f is *not normalized*
|
||||
sum_log = 0.0
|
||||
for x_i in x_spatial:
|
||||
sum_log += math.log(m_opt* b_opt + c0_opt if x_i >= b_opt else m_opt * x_i + c0_opt)
|
||||
aic_model = 6. - 2. * sum_log # three parameters: b_opt, m_opt, c0_opt
|
||||
|
||||
# TODO
|
||||
# should this be part of the plotting function itself, it should not be necessary for me to do this
|
||||
d_curve = np.linspace(min(d), max(d), 500)
|
||||
C_curve = np.piecewise(
|
||||
d_curve,
|
||||
[d_curve <= b_opt, d_curve > b_opt],
|
||||
[lambda x: m_opt * x + c0_opt, lambda x: m_opt * b_opt + c0_opt]
|
||||
)
|
||||
# plot model containing modeled piece-wise linear function
|
||||
plot.quantification_plot(ax1, quantification, d_curve, C_curve, 'Models', aic_model)
|
||||
|
||||
# linear regression model
|
||||
m_reg, c_reg = fitting.fit_linear_regression(d, C)
|
||||
|
||||
# AIC
|
||||
sum_log = 0.0
|
||||
for x_i in x_spatial:
|
||||
sum_log += math.log(m_reg * x_i + c_reg)
|
||||
aic_regression = 4. - 2. * sum_log # two parameter: m_reg, c_reg
|
||||
|
||||
x = np.linspace(min(d), max(d), 500)
|
||||
y = m_reg * x + c_reg
|
||||
ax1.plot(x, y, color='k', linewidth=1, label=f"Simple Linear Regression | AIC: {aic_regression}")
|
||||
ax1.legend()
|
||||
|
||||
fig.savefig(f"Merfish_closeness.svg", format='svg')
|
||||
|
||||
|
||||
for i in range(1, 6):
|
||||
points, seed = random_graph()
|
||||
g, weight = spatial_graph(points)
|
||||
g = GraphView(g)
|
||||
|
||||
x_spatial = []
|
||||
for v in g.vertices():
|
||||
x_spatial.append(g.vp["pos"][v][0])
|
||||
|
||||
# calculate centrality values
|
||||
vp = closeness(g, weight=weight)
|
||||
vp.a = np.nan_to_num(vp.a) # correct floating point values
|
||||
# ep.a = np.nan_to_num(ep.a) # correct floating point values
|
||||
|
||||
# normalization
|
||||
min_val, max_val = vp.a.min(), vp.a.max()
|
||||
vp.a = (vp.a - min_val) / (max_val - min_val)
|
||||
|
||||
# calculate convex hull
|
||||
convex_hull = centrality.convex_hull(g)
|
||||
|
||||
@@ -81,6 +157,15 @@ for i in range(1, 10):
|
||||
C = quantification[:, 1]
|
||||
m_opt, c0_opt, b_opt = fitting.fit_piece_wise_linear(d, C)
|
||||
|
||||
# AIC
|
||||
# AIC = 2 * k (= 2) - 2 * ln(L^~)
|
||||
# with L^~ = sum(f(x_i)) where x_i describes a data point
|
||||
# - f is *not normalized*
|
||||
sum_log = 0.0
|
||||
for x_i in x_spatial:
|
||||
sum_log += math.log(m_opt* b_opt + c0_opt if x_i >= b_opt else m_opt * x_i + c0_opt)
|
||||
aic_model = 6. - 2. * sum_log # three parameters: b_opt, m_opt, c0_opt
|
||||
|
||||
# TODO
|
||||
# should this be part of the plotting function itself, it should not be necessary for me to do this
|
||||
d_curve = np.linspace(min(d), max(d), 500)
|
||||
@@ -90,16 +175,23 @@ for i in range(1, 10):
|
||||
[lambda x: m_opt * x + c0_opt, lambda x: m_opt * b_opt + c0_opt]
|
||||
)
|
||||
# plot model containing modeled piece-wise linear function
|
||||
plot.quantification_plot(ax1, quantification, d_curve, C_curve, 'Models')
|
||||
plot.quantification_plot(ax1, quantification, d_curve, C_curve, 'Models', aic_model)
|
||||
|
||||
# linear regression model
|
||||
m_reg, c_reg = fitting.fit_linear_regression(d, C)
|
||||
|
||||
# AIC
|
||||
sum_log = 0.0
|
||||
for x_i in x_spatial:
|
||||
sum_log += math.log(m_reg * x_i + c_reg)
|
||||
aic_regression = 4. - 2. * sum_log # two parameter: m_reg, c_reg
|
||||
|
||||
x = np.linspace(min(d), max(d), 500)
|
||||
y = m_reg * x + c_reg
|
||||
ax1.plot(x, y, color='k', linewidth=1, label="Simple Linear Regression")
|
||||
ax1.plot(x, y, color='k', linewidth=1, label=f"Simple Linear Regression | AIC: {aic_regression}")
|
||||
ax1.legend()
|
||||
|
||||
fig.savefig(f"random_point_clouds/{i}_closeness.svg", format='svg')
|
||||
fig.savefig(f"uniform_random_point_clouds/{i}_closeness.svg", format='svg')
|
||||
|
||||
# ---------------------------------------------------------------------------------------------
|
||||
|
||||
@@ -108,6 +200,10 @@ for i in range(1, 10):
|
||||
vp.a = np.nan_to_num(vp.a) # correct floating point values
|
||||
# ep.a = np.nan_to_num(ep.a) # correct floating point values
|
||||
|
||||
# normalization
|
||||
min_val, max_val = vp.a.min(), vp.a.max()
|
||||
vp.a = (vp.a - min_val) / (max_val - min_val)
|
||||
|
||||
# calculate convex hull
|
||||
convex_hull = centrality.convex_hull(g)
|
||||
|
||||
@@ -124,6 +220,15 @@ for i in range(1, 10):
|
||||
C = quantification[:, 1]
|
||||
m_opt, c0_opt, b_opt = fitting.fit_piece_wise_linear(d, C)
|
||||
|
||||
# AIC
|
||||
# AIC = 2 * k (= 2) - 2 * ln(L^~)
|
||||
# with L^~ = sum(f(x_i)) where x_i describes a data point
|
||||
# - f is *not normalized*
|
||||
sum_log = 0.0
|
||||
for x_i in x_spatial:
|
||||
sum_log += math.log(m_opt* b_opt + c0_opt if x_i >= b_opt else m_opt * x_i + c0_opt)
|
||||
aic_model = 6. - 2. * sum_log # three parameters: b_opt, m_opt, c0_opt
|
||||
|
||||
# TODO
|
||||
# should this be part of the plotting function itself, it should not be necessary for me to do this
|
||||
d_curve = np.linspace(min(d), max(d), 500)
|
||||
@@ -133,16 +238,23 @@ for i in range(1, 10):
|
||||
[lambda x: m_opt * x + c0_opt, lambda x: m_opt * b_opt + c0_opt]
|
||||
)
|
||||
# plot model containing modeled piece-wise linear function
|
||||
plot.quantification_plot(ax1, quantification, d_curve, C_curve, 'Models')
|
||||
plot.quantification_plot(ax1, quantification, d_curve, C_curve, 'Models', aic_model)
|
||||
|
||||
# linear regression model
|
||||
m_reg, c_reg = fitting.fit_linear_regression(d, C)
|
||||
|
||||
# AIC
|
||||
sum_log = 0.0
|
||||
for x_i in x_spatial:
|
||||
sum_log += math.log(m_reg * x_i + c_reg)
|
||||
aic_regression = 4. - 2. * sum_log # two parameter: m_reg, c_reg
|
||||
|
||||
x = np.linspace(min(d), max(d), 500)
|
||||
y = m_reg * x + c_reg
|
||||
ax1.plot(x, y, color='k', linewidth=1, label="Simple Linear Regression")
|
||||
ax1.plot(x, y, color='k', linewidth=1, label=f"Simple Linear Regression | AIC: {aic_regression}")
|
||||
ax1.legend()
|
||||
|
||||
fig.savefig(f"random_point_clouds/{i}_betweenness.svg", format='svg')
|
||||
fig.savefig(f"uniform_random_point_clouds/{i}_betweenness.svg", format='svg')
|
||||
|
||||
# ---------------------------------------------------------------------------------------------
|
||||
|
||||
@@ -151,6 +263,10 @@ for i in range(1, 10):
|
||||
vp.a = np.nan_to_num(vp.a) # correct floating point values
|
||||
# ep.a = np.nan_to_num(ep.a) # correct floating point values
|
||||
|
||||
# normalization
|
||||
min_val, max_val = vp.a.min(), vp.a.max()
|
||||
vp.a = (vp.a - min_val) / (max_val - min_val)
|
||||
|
||||
# calculate convex hull
|
||||
convex_hull = centrality.convex_hull(g)
|
||||
|
||||
@@ -167,6 +283,15 @@ for i in range(1, 10):
|
||||
C = quantification[:, 1]
|
||||
m_opt, c0_opt, b_opt = fitting.fit_piece_wise_linear(d, C)
|
||||
|
||||
# AIC
|
||||
# AIC = 2 * k (= 2) - 2 * ln(L^~)
|
||||
# with L^~ = sum(f(x_i)) where x_i describes a data point
|
||||
# - f is *not normalized*
|
||||
sum_log = 0.0
|
||||
for x_i in x_spatial:
|
||||
sum_log += math.log(m_opt* b_opt + c0_opt if x_i >= b_opt else m_opt * x_i + c0_opt)
|
||||
aic_model = 6. - 2. * sum_log # three parameters: b_opt, m_opt, c0_opt
|
||||
|
||||
# TODO
|
||||
# should this be part of the plotting function itself, it should not be necessary for me to do this
|
||||
d_curve = np.linspace(min(d), max(d), 500)
|
||||
@@ -176,13 +301,20 @@ for i in range(1, 10):
|
||||
[lambda x: m_opt * x + c0_opt, lambda x: m_opt * b_opt + c0_opt]
|
||||
)
|
||||
# plot model containing modeled piece-wise linear function
|
||||
plot.quantification_plot(ax1, quantification, d_curve, C_curve, 'Models')
|
||||
plot.quantification_plot(ax1, quantification, d_curve, C_curve, 'Models', aic_model)
|
||||
|
||||
# linear regression model
|
||||
m_reg, c_reg = fitting.fit_linear_regression(d, C)
|
||||
|
||||
# AIC
|
||||
sum_log = 0.0
|
||||
for x_i in x_spatial:
|
||||
sum_log += math.log(m_reg * x_i + c_reg)
|
||||
aic_regression = 4. - 2. * sum_log # two parameter: m_reg, c_reg
|
||||
|
||||
x = np.linspace(min(d), max(d), 500)
|
||||
y = m_reg * x + c_reg
|
||||
ax1.plot(x, y, color='k', linewidth=1, label="Simple Linear Regression")
|
||||
ax1.plot(x, y, color='k', linewidth=1, label=f"Simple Linear Regression | AIC: {aic_regression}")
|
||||
ax1.legend()
|
||||
|
||||
fig.savefig(f"random_point_clouds/{i}_pagerank.svg", format='svg')
|
||||
fig.savefig(f"uniform_random_point_clouds/{i}_pagerank.svg", format='svg')
|
||||
|
||||
Reference in New Issue
Block a user