add: calculate AIC when solving the model fitting problem
This commit is contained in:
133
example.py
133
example.py
@@ -42,6 +42,46 @@ def random_graph(n=5000, seed=None):
|
|||||||
return rng.random((n, 2)), seed
|
return rng.random((n, 2)), seed
|
||||||
|
|
||||||
|
|
||||||
|
def random_graph_favor_border(n=3000, seed = None):
|
||||||
|
if seed is None:
|
||||||
|
import secrets
|
||||||
|
seed = secrets.randbits(128)
|
||||||
|
rng = np.random.default_rng(seed=seed)
|
||||||
|
vps = np.zeros((n, 2))
|
||||||
|
for i in range(0, n):
|
||||||
|
r_x = rng.random()
|
||||||
|
if rng.random() > 0.5:
|
||||||
|
while (r_x > 0.3 and r_x < 0.7):
|
||||||
|
r_x = rng.random()
|
||||||
|
r_y = rng.random()
|
||||||
|
if rng.random() > 0.5:
|
||||||
|
while (r_y > 0.3 and r_y < 0.7):
|
||||||
|
r_y = rng.random()
|
||||||
|
vps[i][0] = r_x
|
||||||
|
vps[i][1] = r_y
|
||||||
|
return vps, seed
|
||||||
|
|
||||||
|
|
||||||
|
def random_graph_favor_center(n=3000, seed = None):
|
||||||
|
if seed is None:
|
||||||
|
import secrets
|
||||||
|
seed = secrets.randbits(128)
|
||||||
|
rng = np.random.default_rng(seed=seed)
|
||||||
|
vps = np.zeros((n, 2))
|
||||||
|
for i in range(0, n):
|
||||||
|
r_x = rng.random()
|
||||||
|
if rng.random() > 0.7:
|
||||||
|
while (r_x < 0.4 or r_x > 0.6):
|
||||||
|
r_x = rng.random()
|
||||||
|
r_y = rng.random()
|
||||||
|
if rng.random() > 0.7:
|
||||||
|
while (r_y < 0.4 or r_y > 0.6):
|
||||||
|
r_y = rng.random()
|
||||||
|
vps[i][0] = r_x
|
||||||
|
vps[i][1] = r_y
|
||||||
|
return vps, seed
|
||||||
|
|
||||||
|
|
||||||
def spatial_graph(adata):
|
def spatial_graph(adata):
|
||||||
"""
|
"""
|
||||||
Generate the spatial graph using delaunay for the given `adata`.
|
Generate the spatial graph using delaunay for the given `adata`.
|
||||||
@@ -87,16 +127,7 @@ def merfish_example():
|
|||||||
# optimize model's piece-wise linear function
|
# optimize model's piece-wise linear function
|
||||||
d = quantification[:, 0]
|
d = quantification[:, 0]
|
||||||
C = quantification[:, 1]
|
C = quantification[:, 1]
|
||||||
m_opt, c0_opt, b_opt = fitting.fit_piece_wise_linear(d, C)
|
m_opt, c0_opt, b_opt, aic_opt = fitting.fit_piece_wise_linear(d, C)
|
||||||
|
|
||||||
# AIC
|
|
||||||
# AIC = 2 * k (= 2) - 2 * ln(L^~)
|
|
||||||
# with L^~ = sum(f(x_i)) where x_i describes a data point
|
|
||||||
# - f is *not normalized*
|
|
||||||
sum_log = 0.0
|
|
||||||
for x_i in x_spatial:
|
|
||||||
sum_log += math.log(m_opt* b_opt + c0_opt if x_i >= b_opt else m_opt * x_i + c0_opt)
|
|
||||||
aic_model = 6. - 2. * sum_log # three parameters: b_opt, m_opt, c0_opt
|
|
||||||
|
|
||||||
# TODO
|
# TODO
|
||||||
# should this be part of the plotting function itself, it should not be necessary for me to do this
|
# should this be part of the plotting function itself, it should not be necessary for me to do this
|
||||||
@@ -107,25 +138,18 @@ def merfish_example():
|
|||||||
[lambda x: m_opt * x + c0_opt, lambda x: m_opt * b_opt + c0_opt]
|
[lambda x: m_opt * x + c0_opt, lambda x: m_opt * b_opt + c0_opt]
|
||||||
)
|
)
|
||||||
# plot model containing modeled piece-wise linear function
|
# plot model containing modeled piece-wise linear function
|
||||||
plot.quantification_plot(ax1, quantification, d_curve, C_curve, 'Models', aic_model)
|
plot.quantification_plot(ax1, quantification, d_curve, C_curve, 'Models', aic_opt)
|
||||||
|
|
||||||
# linear regression model
|
# linear regression model
|
||||||
m_reg, c_reg = fitting.fit_linear_regression(d, C)
|
m_reg, c_reg, aic_reg = fitting.fit_linear_regression(d, C)
|
||||||
|
|
||||||
# AIC
|
|
||||||
sum_log = 0.0
|
|
||||||
for x_i in x_spatial:
|
|
||||||
sum_log += math.log(m_reg * x_i + c_reg)
|
|
||||||
aic_regression = 4. - 2. * sum_log # two parameter: m_reg, c_reg
|
|
||||||
|
|
||||||
x = np.linspace(min(d), max(d), 500)
|
x = np.linspace(min(d), max(d), 500)
|
||||||
y = m_reg * x + c_reg
|
y = m_reg * x + c_reg
|
||||||
ax1.plot(x, y, color='k', linewidth=1, label=f"Simple Linear Regression | AIC: {aic_regression}")
|
ax1.plot(x, y, color='k', linewidth=1, label=f"Simple Linear Regression | AIC: {aic_reg}")
|
||||||
ax1.legend()
|
ax1.legend()
|
||||||
|
|
||||||
fig.savefig(f"Merfish_closeness.svg", format='svg')
|
fig.savefig(f"Merfish_closeness.svg", format='svg')
|
||||||
|
|
||||||
|
|
||||||
for i in range(1, 6):
|
for i in range(1, 6):
|
||||||
points, seed = random_graph()
|
points, seed = random_graph()
|
||||||
g, weight = spatial_graph(points)
|
g, weight = spatial_graph(points)
|
||||||
@@ -158,16 +182,7 @@ for i in range(1, 6):
|
|||||||
# optimize model's piece-wise linear function
|
# optimize model's piece-wise linear function
|
||||||
d = quantification[:, 0]
|
d = quantification[:, 0]
|
||||||
C = quantification[:, 1]
|
C = quantification[:, 1]
|
||||||
m_opt, c0_opt, b_opt = fitting.fit_piece_wise_linear(d, C)
|
m_opt, c0_opt, b_opt, aic_opt = fitting.fit_piece_wise_linear(d, C)
|
||||||
|
|
||||||
# AIC
|
|
||||||
# AIC = 2 * k (= 2) - 2 * ln(L^~)
|
|
||||||
# with L^~ = sum(f(x_i)) where x_i describes a data point
|
|
||||||
# - f is *not normalized*
|
|
||||||
sum_log = 0.0
|
|
||||||
for x_i in x_spatial:
|
|
||||||
sum_log += math.log(m_opt* b_opt + c0_opt if x_i >= b_opt else m_opt * x_i + c0_opt)
|
|
||||||
aic_model = 6. - 2. * sum_log # three parameters: b_opt, m_opt, c0_opt
|
|
||||||
|
|
||||||
# TODO
|
# TODO
|
||||||
# should this be part of the plotting function itself, it should not be necessary for me to do this
|
# should this be part of the plotting function itself, it should not be necessary for me to do this
|
||||||
@@ -178,20 +193,14 @@ for i in range(1, 6):
|
|||||||
[lambda x: m_opt * x + c0_opt, lambda x: m_opt * b_opt + c0_opt]
|
[lambda x: m_opt * x + c0_opt, lambda x: m_opt * b_opt + c0_opt]
|
||||||
)
|
)
|
||||||
# plot model containing modeled piece-wise linear function
|
# plot model containing modeled piece-wise linear function
|
||||||
plot.quantification_plot(ax1, quantification, d_curve, C_curve, 'Models', aic_model)
|
plot.quantification_plot(ax1, quantification, d_curve, C_curve, 'Models', aic_opt)
|
||||||
|
|
||||||
# linear regression model
|
# linear regression model
|
||||||
m_reg, c_reg = fitting.fit_linear_regression(d, C)
|
m_reg, c_reg, aic_reg = fitting.fit_linear_regression(d, C)
|
||||||
|
|
||||||
# AIC
|
|
||||||
sum_log = 0.0
|
|
||||||
for x_i in x_spatial:
|
|
||||||
sum_log += math.log(m_reg * x_i + c_reg)
|
|
||||||
aic_regression = 4. - 2. * sum_log # two parameter: m_reg, c_reg
|
|
||||||
|
|
||||||
x = np.linspace(min(d), max(d), 500)
|
x = np.linspace(min(d), max(d), 500)
|
||||||
y = m_reg * x + c_reg
|
y = m_reg * x + c_reg
|
||||||
ax1.plot(x, y, color='k', linewidth=1, label=f"Simple Linear Regression | AIC: {aic_regression}")
|
ax1.plot(x, y, color='k', linewidth=1, label=f"Simple Linear Regression | AIC: {aic_reg}")
|
||||||
ax1.legend()
|
ax1.legend()
|
||||||
|
|
||||||
fig.savefig(f"uniform_random_point_clouds/{i}_closeness.svg", format='svg')
|
fig.savefig(f"uniform_random_point_clouds/{i}_closeness.svg", format='svg')
|
||||||
@@ -221,16 +230,7 @@ for i in range(1, 6):
|
|||||||
# optimize model's piece-wise linear function
|
# optimize model's piece-wise linear function
|
||||||
d = quantification[:, 0]
|
d = quantification[:, 0]
|
||||||
C = quantification[:, 1]
|
C = quantification[:, 1]
|
||||||
m_opt, c0_opt, b_opt = fitting.fit_piece_wise_linear(d, C)
|
m_opt, c0_opt, b_opt, aic_opt = fitting.fit_piece_wise_linear(d, C)
|
||||||
|
|
||||||
# AIC
|
|
||||||
# AIC = 2 * k (= 2) - 2 * ln(L^~)
|
|
||||||
# with L^~ = sum(f(x_i)) where x_i describes a data point
|
|
||||||
# - f is *not normalized*
|
|
||||||
sum_log = 0.0
|
|
||||||
for x_i in x_spatial:
|
|
||||||
sum_log += math.log(m_opt* b_opt + c0_opt if x_i >= b_opt else m_opt * x_i + c0_opt)
|
|
||||||
aic_model = 6. - 2. * sum_log # three parameters: b_opt, m_opt, c0_opt
|
|
||||||
|
|
||||||
# TODO
|
# TODO
|
||||||
# should this be part of the plotting function itself, it should not be necessary for me to do this
|
# should this be part of the plotting function itself, it should not be necessary for me to do this
|
||||||
@@ -241,20 +241,14 @@ for i in range(1, 6):
|
|||||||
[lambda x: m_opt * x + c0_opt, lambda x: m_opt * b_opt + c0_opt]
|
[lambda x: m_opt * x + c0_opt, lambda x: m_opt * b_opt + c0_opt]
|
||||||
)
|
)
|
||||||
# plot model containing modeled piece-wise linear function
|
# plot model containing modeled piece-wise linear function
|
||||||
plot.quantification_plot(ax1, quantification, d_curve, C_curve, 'Models', aic_model)
|
plot.quantification_plot(ax1, quantification, d_curve, C_curve, 'Models', aic_opt)
|
||||||
|
|
||||||
# linear regression model
|
# linear regression model
|
||||||
m_reg, c_reg = fitting.fit_linear_regression(d, C)
|
m_reg, c_reg, aic_reg = fitting.fit_linear_regression(d, C)
|
||||||
|
|
||||||
# AIC
|
|
||||||
sum_log = 0.0
|
|
||||||
for x_i in x_spatial:
|
|
||||||
sum_log += math.log(m_reg * x_i + c_reg)
|
|
||||||
aic_regression = 4. - 2. * sum_log # two parameter: m_reg, c_reg
|
|
||||||
|
|
||||||
x = np.linspace(min(d), max(d), 500)
|
x = np.linspace(min(d), max(d), 500)
|
||||||
y = m_reg * x + c_reg
|
y = m_reg * x + c_reg
|
||||||
ax1.plot(x, y, color='k', linewidth=1, label=f"Simple Linear Regression | AIC: {aic_regression}")
|
ax1.plot(x, y, color='k', linewidth=1, label=f"Simple Linear Regression | AIC: {aic_reg}")
|
||||||
ax1.legend()
|
ax1.legend()
|
||||||
|
|
||||||
fig.savefig(f"uniform_random_point_clouds/{i}_betweenness.svg", format='svg')
|
fig.savefig(f"uniform_random_point_clouds/{i}_betweenness.svg", format='svg')
|
||||||
@@ -284,16 +278,7 @@ for i in range(1, 6):
|
|||||||
# optimize model's piece-wise linear function
|
# optimize model's piece-wise linear function
|
||||||
d = quantification[:, 0]
|
d = quantification[:, 0]
|
||||||
C = quantification[:, 1]
|
C = quantification[:, 1]
|
||||||
m_opt, c0_opt, b_opt = fitting.fit_piece_wise_linear(d, C)
|
m_opt, c0_opt, b_opt, aic_opt = fitting.fit_piece_wise_linear(d, C)
|
||||||
|
|
||||||
# AIC
|
|
||||||
# AIC = 2 * k (= 2) - 2 * ln(L^~)
|
|
||||||
# with L^~ = sum(f(x_i)) where x_i describes a data point
|
|
||||||
# - f is *not normalized*
|
|
||||||
sum_log = 0.0
|
|
||||||
for x_i in x_spatial:
|
|
||||||
sum_log += math.log(m_opt* b_opt + c0_opt if x_i >= b_opt else m_opt * x_i + c0_opt)
|
|
||||||
aic_model = 6. - 2. * sum_log # three parameters: b_opt, m_opt, c0_opt
|
|
||||||
|
|
||||||
# TODO
|
# TODO
|
||||||
# should this be part of the plotting function itself, it should not be necessary for me to do this
|
# should this be part of the plotting function itself, it should not be necessary for me to do this
|
||||||
@@ -304,20 +289,14 @@ for i in range(1, 6):
|
|||||||
[lambda x: m_opt * x + c0_opt, lambda x: m_opt * b_opt + c0_opt]
|
[lambda x: m_opt * x + c0_opt, lambda x: m_opt * b_opt + c0_opt]
|
||||||
)
|
)
|
||||||
# plot model containing modeled piece-wise linear function
|
# plot model containing modeled piece-wise linear function
|
||||||
plot.quantification_plot(ax1, quantification, d_curve, C_curve, 'Models', aic_model)
|
plot.quantification_plot(ax1, quantification, d_curve, C_curve, 'Models', aic_opt)
|
||||||
|
|
||||||
# linear regression model
|
# linear regression model
|
||||||
m_reg, c_reg = fitting.fit_linear_regression(d, C)
|
m_reg, c_reg, aic_reg = fitting.fit_linear_regression(d, C)
|
||||||
|
|
||||||
# AIC
|
|
||||||
sum_log = 0.0
|
|
||||||
for x_i in x_spatial:
|
|
||||||
sum_log += math.log(m_reg * x_i + c_reg)
|
|
||||||
aic_regression = 4. - 2. * sum_log # two parameter: m_reg, c_reg
|
|
||||||
|
|
||||||
x = np.linspace(min(d), max(d), 500)
|
x = np.linspace(min(d), max(d), 500)
|
||||||
y = m_reg * x + c_reg
|
y = m_reg * x + c_reg
|
||||||
ax1.plot(x, y, color='k', linewidth=1, label=f"Simple Linear Regression | AIC: {aic_regression}")
|
ax1.plot(x, y, color='k', linewidth=1, label=f"Simple Linear Regression | AIC: {aic_reg}")
|
||||||
ax1.legend()
|
ax1.legend()
|
||||||
|
|
||||||
fig.savefig(f"uniform_random_point_clouds/{i}_pagerank.svg", format='svg')
|
fig.savefig(f"uniform_random_point_clouds/{i}_pagerank.svg", format='svg')
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
gurobipy
|
gurobi
|
||||||
graph-tools
|
graph-tools
|
||||||
numpy
|
numpy
|
||||||
matplotlib
|
matplotlib
|
||||||
|
|||||||
@@ -1,3 +1,5 @@
|
|||||||
|
import math
|
||||||
|
|
||||||
import gurobipy as gp
|
import gurobipy as gp
|
||||||
from gurobipy import GRB
|
from gurobipy import GRB
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@@ -49,7 +51,11 @@ def fit_piece_wise_linear(d, C, M=1000):
|
|||||||
model.addConstr((1 - z[i]) * M >= d[i] - b)
|
model.addConstr((1 - z[i]) * M >= d[i] - b)
|
||||||
|
|
||||||
model.optimize()
|
model.optimize()
|
||||||
return m.X, c0.X, b.X
|
# AIC
|
||||||
|
k = 4
|
||||||
|
aic = 2. * k + n * math.log(model.ObjVal)
|
||||||
|
|
||||||
|
return m.X, c0.X, b.X, aic
|
||||||
|
|
||||||
|
|
||||||
def fit_linear_regression(d, C):
|
def fit_linear_regression(d, C):
|
||||||
@@ -71,11 +77,11 @@ def fit_linear_regression(d, C):
|
|||||||
|
|
||||||
model.setObjective(gp.quicksum((C[i] - alpha - beta * d[i])**2 for i in range(n)), GRB.MINIMIZE)
|
model.setObjective(gp.quicksum((C[i] - alpha - beta * d[i])**2 for i in range(n)), GRB.MINIMIZE)
|
||||||
model.optimize()
|
model.optimize()
|
||||||
|
# AIC
|
||||||
|
k = 2
|
||||||
|
aic = 2. * k + n * math.log(model.ObjVal)
|
||||||
|
|
||||||
for v in model.getVars():
|
return beta.X, alpha.X, aic
|
||||||
print(f"{v.VarName} {v.X:g}")
|
|
||||||
|
|
||||||
return beta.X, alpha.X
|
|
||||||
|
|
||||||
|
|
||||||
def plot_piece_wise_linear(d, C, m_opt, c0_opt, b_opt, measure, n, t, path):
|
def plot_piece_wise_linear(d, C, m_opt, c0_opt, b_opt, measure, n, t, path):
|
||||||
|
|||||||
Reference in New Issue
Block a user