// taken from https://github.com/rockorager/libvaxis/blob/main/src/queue.zig (MIT-License) // with slight modifications /// Queue implementation. Thread safe. Fixed size. _Blocking_ `push` and `pop`. _Polling_ through `tryPop` and `tryPush`. pub fn Queue(comptime T: type, comptime size: usize) type { return struct { buf: [size]T = undefined, read_index: usize = 0, write_index: usize = 0, mutex: std.Thread.Mutex = .{}, // blocks when the buffer is full not_full: std.Thread.Condition = .{}, // ...or empty not_empty: std.Thread.Condition = .{}, const QueueType = @This(); /// Pop an item from the queue. Blocks until an item is available. pub fn pop(this: *QueueType) T { this.mutex.lock(); defer this.mutex.unlock(); while (this.isEmptyLH()) { this.not_empty.wait(&this.mutex); } assert(!this.isEmptyLH()); if (this.isFullLH()) { // If we are full, wake up a push that might be // waiting here. this.not_full.signal(); } const result = this.buf[this.mask(this.read_index)]; this.read_index = this.mask2(this.read_index + 1); return result; } /// Push an item into the queue. Blocks until an item has been /// put in the queue. pub fn push(this: *QueueType, item: T) void { this.mutex.lock(); defer this.mutex.unlock(); while (this.isFullLH()) { this.not_full.wait(&this.mutex); } if (this.isEmptyLH()) { // If we were empty, wake up a pop if it was waiting. this.not_empty.signal(); } assert(!this.isFullLH()); this.buf[this.mask(this.write_index)] = item; this.write_index = this.mask2(this.write_index + 1); } /// Push an item into the queue. Returns true when the item /// was successfully placed in the queue, false if the queue /// was full. pub fn tryPush(this: *QueueType, item: T) bool { this.mutex.lock(); if (this.isFullLH()) { this.mutex.unlock(); return false; } this.mutex.unlock(); this.push(item); return true; } /// Pop an item from the queue. Returns null when no item is /// available. pub fn tryPop(this: *QueueType) ?T { this.mutex.lock(); if (this.isEmptyLH()) { this.mutex.unlock(); return null; } this.mutex.unlock(); return this.pop(); } /// Poll the queue. This call blocks until events are in the queue pub fn poll(this: *QueueType) void { this.mutex.lock(); defer this.mutex.unlock(); while (this.isEmptyLH()) { this.not_empty.wait(&this.mutex); } assert(!this.isEmptyLH()); } pub fn lock(this: *QueueType) void { this.mutex.lock(); } pub fn unlock(this: *QueueType) void { this.mutex.unlock(); } /// Used to efficiently drain the queue pub fn drain(this: *QueueType) ?T { if (this.isEmptyLH()) return null; const result = this.buf[this.mask(this.read_index)]; this.read_index = this.mask2(this.read_index + 1); return result; } fn isEmptyLH(this: QueueType) bool { return this.write_index == this.read_index; } fn isFullLH(this: QueueType) bool { return this.mask2(this.write_index + this.buf.len) == this.read_index; } /// Returns `true` if the queue is empty and `false` otherwise. pub fn isEmpty(this: *QueueType) bool { this.mutex.lock(); defer this.mutex.unlock(); return this.isEmptyLH(); } /// Returns `true` if the queue is full and `false` otherwise. pub fn isFull(this: *QueueType) bool { this.mutex.lock(); defer this.mutex.unlock(); return this.isFullLH(); } /// Returns the length pub fn len(this: QueueType) usize { const wrap_offset = 2 * this.buf.len * @intFromBool(this.write_index < this.read_index); const adjusted_write_index = this.write_index + wrap_offset; return adjusted_write_index - this.read_index; } /// Returns `index` modulo the length of the backing slice. fn mask(this: QueueType, index: usize) usize { return index % this.buf.len; } /// Returns `index` modulo twice the length of the backing slice. fn mask2(this: QueueType, index: usize) usize { return index % (2 * this.buf.len); } }; } const std = @import("std"); const testing = std.testing; const assert = std.debug.assert; const Thread = std.Thread; const cfg = Thread.SpawnConfig{ .allocator = testing.allocator }; test "Queue: simple push / pop" { var queue: Queue(u8, 16) = .{}; queue.push(1); queue.push(2); const pop = queue.pop(); try testing.expectEqual(1, pop); try testing.expectEqual(2, queue.pop()); } fn testPushPop(q: *Queue(u8, 2)) !void { q.push(3); try testing.expectEqual(2, q.pop()); } test "Fill, wait to push, pop once in another thread" { var queue: Queue(u8, 2) = .{}; queue.push(1); queue.push(2); const t = try Thread.spawn(cfg, testPushPop, .{&queue}); try testing.expectEqual(false, queue.tryPush(3)); try testing.expectEqual(1, queue.pop()); t.join(); try testing.expectEqual(3, queue.pop()); try testing.expectEqual(null, queue.tryPop()); } fn testPush(q: *Queue(u8, 2)) void { q.push(0); q.push(1); q.push(2); q.push(3); q.push(4); } test "Try to pop, fill from another thread" { var queue: Queue(u8, 2) = .{}; const thread = try Thread.spawn(cfg, testPush, .{&queue}); for (0..5) |idx| { try testing.expectEqual(@as(u8, @intCast(idx)), queue.pop()); } thread.join(); } fn sleepyPop(q: *Queue(u8, 2)) !void { // First we wait for the queue to be full. while (!q.isFull()) try Thread.yield(); // Then we spuriously wake it up, because that's a thing that can // happen. q.not_full.signal(); q.not_empty.signal(); // Then give the other thread a good chance of waking up. It's not // clear that yield guarantees the other thread will be scheduled, // so we'll throw a sleep in here just to be sure. The queue is // still full and the push in the other thread is still blocked // waiting for space. try Thread.yield(); std.Thread.sleep(std.time.ns_per_s); // Finally, let that other thread go. try testing.expectEqual(1, q.pop()); // This won't continue until the other thread has had a chance to // put at least one item in the queue. while (!q.isFull()) try Thread.yield(); // But we want to ensure that there's a second push waiting, so // here's another sleep. std.Thread.sleep(std.time.ns_per_s / 2); // Another spurious wake... q.not_full.signal(); q.not_empty.signal(); // And another chance for the other thread to see that it's // spurious and go back to sleep. try Thread.yield(); std.Thread.sleep(std.time.ns_per_s / 2); // Pop that thing and we're done. try testing.expectEqual(2, q.pop()); } test "Fill, block, fill, block" { // Fill the queue, block while trying to write another item, have // a background thread unblock us, then block while trying to // write yet another thing. Have the background thread unblock // that too (after some time) then drain the queue. This test // fails if the while loop in `push` is turned into an `if`. var queue: Queue(u8, 2) = .{}; const thread = try Thread.spawn(cfg, sleepyPop, .{&queue}); queue.push(1); queue.push(2); const now = std.time.milliTimestamp(); queue.push(3); // This one should block. const then = std.time.milliTimestamp(); // Just to make sure the sleeps are yielding to this thread, make // sure it took at least 900ms to do the push. try testing.expect(then - now > 900); // This should block again, waiting for the other thread. queue.push(4); // And once that push has gone through, the other thread's done. thread.join(); try testing.expectEqual(3, queue.pop()); try testing.expectEqual(4, queue.pop()); } fn sleepyPush(q: *Queue(u8, 1)) !void { // Try to ensure the other thread has already started trying to pop. try Thread.yield(); std.Thread.sleep(std.time.ns_per_s / 2); // Spurious wake q.not_full.signal(); q.not_empty.signal(); try Thread.yield(); std.Thread.sleep(std.time.ns_per_s / 2); // Stick something in the queue so it can be popped. q.push(1); // Ensure it's been popped. while (!q.isEmpty()) try Thread.yield(); // Give the other thread time to block again. try Thread.yield(); std.Thread.sleep(std.time.ns_per_s / 2); // Spurious wake q.not_full.signal(); q.not_empty.signal(); q.push(2); } test "Drain, block, drain, block" { // This is like fill/block/fill/block, but on the pop end. This // test should fail if the `while` loop in `pop` is turned into an // `if`. var queue: Queue(u8, 1) = .{}; const thread = try Thread.spawn(cfg, sleepyPush, .{&queue}); try testing.expectEqual(1, queue.pop()); try testing.expectEqual(2, queue.pop()); thread.join(); } fn readerThread(q: *Queue(u8, 1)) !void { try testing.expectEqual(1, q.pop()); } test "2 readers" { // 2 threads read, one thread writes var queue: Queue(u8, 1) = .{}; const t1 = try Thread.spawn(cfg, readerThread, .{&queue}); const t2 = try Thread.spawn(cfg, readerThread, .{&queue}); try Thread.yield(); std.Thread.sleep(std.time.ns_per_s / 2); queue.push(1); queue.push(1); t1.join(); t2.join(); } fn writerThread(q: *Queue(u8, 1)) !void { q.push(1); } test "2 writers" { var queue: Queue(u8, 1) = .{}; const t1 = try Thread.spawn(cfg, writerThread, .{&queue}); const t2 = try Thread.spawn(cfg, writerThread, .{&queue}); try testing.expectEqual(1, queue.pop()); try testing.expectEqual(1, queue.pop()); t1.join(); t2.join(); }